IBC Protocol Reviews (aka Risk Assessment)

It's a Matter of Perspective...

Individuals with different experience will view risk differently

IBCs rely on multiple perspectives to evaluate risk

Challenge of Risk Assessment for rDNA Materials

- Recombinant DNA raises possibility of modifying a host or vector to impart new properties not considered in original risk group classification
- Requires an understanding of the host/ vector system involved, the expression construct, and the finished product
 - protection of personnel
 - guidance for containment and work practices

Elements of Risk Assessment

- For rDNA materials must consider:
 - Transgene
 - Effects of the gene product being produced
 - Effect of eliminating a gene product
 - Vector/host system
 - Intrinsic characteristics (risk group)
 - Replication competence
 - Residual viral gene expression
 - End product
 - Possible introduction or increase of virulence

Points to Consider

Gene Product Effects

Local effects

- Protein may have deleterious effects on the cell it is expressed in, but can't spread
 - Ion channels, enzymes
- Systemic effects
 - Secreted protein that can disseminate and exert an effect on otherwise unmodified cells
 - Cytokines, growth factors
 - A protein that modifies a cell so that this cell becomes a threat
 - Oncogenes

Loss of Gene Product

- RNAi used to knock-down expression of a normal cellular protein
- Will the effect of this change be:
 - Local? (i.e. eliminating an enzyme in a metabolic pathway)
 - Disseminated? (i.e. eliminating a protein that regulates growth control)
- Off-target effects

Bacterial Vector Considerations

- Basic characteristics of organism
 - Pathogenicity
 - Ability to persist in host
- Mobile Genetic Elements
 - Plasmids
 - Insertion sequences and transposons
 - Bacteriophages
 - Ability to shuttle virulence factors

Viral Vector Considerations: General

- Pathogenicity of parental virus
- Cytopathogenicity of vector
- Scale-up considerations
- Requirements for specialized facilities
- Training requirements

Viral Vector Considerations: Efficiency and Persistence

Efficiency

- In vitro vs in vivo delivery
- Tissue tropism
- Inactivation by complement
- Persistence
 - Integration or persistence of transgene
 - Immune response to vector
- Concern: ability to prolong effects of accidental exposure

Viral Vector Considerations: Route of Transmission

- Blood-borne
 Lentivirus
- Direct contact
 - vaccinia
- Respiratory
 - Adenovirus, adeno-associated virus
- Containment vs work practices
 Does containment really belo, or work
 - Does containment really help, or would eliminating sharps accomplish more

Viral Vector Considerations: Host Range

- Based on human pathogens

 Replication incompetent
 Viral gene products in vector
- Non-pathogenic viruses
 - Adeno-associated virus
- Based on non-human pathogens
 - Reduced pathogenicity (vaccinia, avipox)
 - Non-pathogenic (baculovirus)
- Tropism and host range

 Change in cell type or species affected

Viral Vector Considerations: Replication Competence

- Replication competent
 - Vaccinia
 - Baculovirus
- Replication competent but crippled

 Alphaviruses
- Replication incompetent
 - Retrovirus, lentivirus, adeno-associated virus
 - Adenovirus (early generations), herpesvirus

End Product Concerns

- Increased risk over vector alone
 - Introduction of virulence factors
 - Toxins, antibiotic resistance
 - Increased ability to evade immune system
 - Efficient delivery of a product with disseminated effects
- Reconstitution of replication competence
- Concern: creation or restoration of pathogenicity

Host/Vector Interactions

- Evade/defeat host immune system
 - Limited exposure to immune system
 - Latency
 - Gene products to suppress immune response or interfere with immune recognition
- Adherence to host cell
 - Surface protein on agent recognizes cellsurface molecule (generally protein)
 - Responsible for tropism and host range of agent

Host/Vector Interactions

Penetration

- Cells take up agent (result of binding, phagocytosis)
- Fusion proteins, nuclear localization signals
- Colonization and multiplication
 - Attachment factors (capsules, pili)
 - Virulence factors (toxins, antibiotics)
 - Commandeer host cell metabolism
- Spread
 - Escape from cell, access to circulation

What is Low Risk?

- Some rDNA work is reasonable to do at BSL1 level
- Things to consider
 - Exposure of user to vector system/cDNA
 - Route of infection
 - Effect of gene product
 - Persistence in host
 - Environmental release
 - Persistence in the environment
 - Nothing gets out alive!

Gene Expression

- At the core of any rDNA experiment is the need to express a protein or a shRNA to knock down expression
- What are the possible effects of this expression?
 - Let's assume the risks are low…
- What type of system will be used to express this construct? What are the risks of the finished product?

Propagation of DNA in *E. coli* K-12

- Much rDNA work in K-12 is considered low risk (exempt)
 - Non-pathogenic for humans
 - Does not persist in host (no attachment)
 - Oral route of infection
 - Bacterial promoters are different than higher order systems
- Certain gene products can raise concerns

Protein Expression in the Baculovirus-Insect Cell System

- Basically an expression cassette but moved into a viral vector
- Baculovirus is considered a low risk viral vector
 - Not replication in mammalian cells
 - No known pathogenicity in humans
 - Form of virus commonly used in lab is not infectious for natural host (insect larvae)
- Always a good idea to inactivate recombinant materials for disposal

What Factor Can Escalate Risk?

- Cascade of infection
 - Evade/defeat host immune system
 - Adherence to host cell
 - Penetration
 - Colonization and multiplication
 - Spread
- Gene products derived from either host or vector systems that are involved in, or could enhance these processes can be concerns in rDNA work

Production of Toxin in *E. coli* K-12

- Simple gene expression cassette in *E. coli*
- Addition of possible virulence factor
 - What are the effects of the toxin
 - LD₅₀ data if available
 - Possible implications for oversight groups
- Nature of the transgene causes a reexamination of risk of *E. coli* expression

Protein Expression in Mammalian Cells using Adenoviral Vectors

- Again just an expression cassette
- The vector: based on a human pathogenic virus
 - Risk factors of starting virus
 - How has vector been disabled
 - Chance of replication competent virus
 - Re-examine the transgene risk
- Nature of the vector can change the risk assessment of the experiment